on our site, to make it easier to find in the search field. Get Books for Free in Pdf, ePub and More formats. Please click "DOWNLOAD", select Download or Read Book and Create your account, 1 Month FREE. More than 10 million members have subscribed, come join us.
This book lays out the fundamentals of friction stir welding and processing and builds toward practical perspectives. The authors describe the links between the thermo-mechanical aspects and the microstructural evolution and use of these for the development of the friction stir process as a broader metallurgical tool for microstructural modification and manufacturing. The fundamentals behind the practical aspects of tool design, process parameter selection and weld related defects are discussed. Local microstructural refinement has enabled new concepts of superplastic forming and enhanced low temperature forming. The collection of friction stir based technologies is a versatile set of solid state manufacturing tools.
It is my ambition in writing this book to bring tribology to the study of control of machines with friction. Tribology, from the greek for study of rubbing, is the discipline that concerns itself with friction, wear and lubrication. Tribology spans a great range of disciplines, from surface physics to lubrication chemistry and engineering, and comprises investigators in diverse specialities. The English language tribology literature now grows at a rate of some 700 articles per year. But for all of this activity, in the three years that I have been concerned with the control of machines with friction, I have but once met a fellow controls engineer who was aware that the field existed, this including many who were concerned with friction. In this vein I must confess that, before undertaking these investigations, I too was unaware that an active discipline of friction existed. The experience stands out as a mark of the specialization of our time. Within tribology, experimental and theoretical understanding of friction in lubricated machines is well developed. The controls engineer's interest is in dynamics, which is not the central interest of the tribologist. The tribologist is more often concerned with wear, with respect to which there has been enormous progress - witness the many mechanisms which we buy today that are lubricated once only, and that at the factory. Though a secondary interest, frictional dynamics are note forgotten by tribology.
The ability to produce durable low-friction surfaces and lubricant fluids has become an important factor in the miniaturization of moving components in many technological devices, e.g., magnetic storage, recording systems, miniature motors and many aerospace components. This book will be useful to physicists, chemists, materials scientists, and engineers who need to understand sliding friction. This second edition covers several new topics including friction on superconductors, simulations of the layering transition, nanoindentation, wear in combustion engines, rolling and sliding of carbon nanotubes, and the friction dynamics of granular materials.
This synthesis report will be of interest to pavement design, construction, management, and research engineers, highway safety officials, and others concerned with pavement friction characteristics. It describes the current state of the practice and discusses the methods used for evaluating wet pavement friction characteristics of new and restored pavements. This synthesis reviews models used for measuring and evaluating friction and texture, causes for friction changes over time, and aggregate and mix design to provide adequate friction. Also presented are construction and surface restoration practices for providing good pavement surface characteristics. In addition, considerations of noise and ride quality are discussed when compromise may be required.
The result of Kenneth C Ludema's 35 years of teaching and research, Friction, Wear, Lubrication: A Textbook in Tribology presents a broad view of the many aspects of tribology. All major aspects of this discipline are included, from mechanical to materials to chemical to mechanics. Ludema's key research areas - marginally lubricated wear and friction - will be of special interest to readers who would like to find reliable and useful data on friction and wear rates. Written primarily as a text/reference, this informative volume describes how to solve design problems in friction and wear. By applying close and informed observation of presently operating tribological systems, along with careful design of simulative tests, readers can develop their own conclusions of tribological results. This book is intended to bring everyone solving problems in friction and wear to the same understanding of what is (and what is not) involved in this exciting field. Seniors and graduate students, as well as practicing engineers employed in a wide range of industries will find this book to be an essential and practical resource.
"Should have broad appeal in many kinds of industry, ranging from automotive to computers—basically any organization concerned with products having moving parts!" —David A. Rigney, Materials Science and Engineering Department, Ohio State University, Columbus, USA In-Depth Coverage of Frictional Concepts Friction affects so many aspects of daily life that most take it for granted. Arguably, mankind’s attempt to control friction dates back to the invention of the wheel. Friction Science and Technology: From Concepts to Applications, Second Edition presents a broad, multidisciplinary overview of the constantly moving field of friction, spanning the history of friction studies to the evolution of measurement instruments. It reviews the gamut of friction test methods, ranging from simple inclined plans to sophisticated laboratory tribometers. The book starts with introductory concepts about friction and progressively delves into the more subtle fundamentals of surface contact, use of various lubricants, and specific applications such as brakes, piston rings, and machine components. Includes American Society of Testing and Management (ASTM) Standards This volume covers multiple facets of friction, with numerous interesting and unusual examples of friction-related technologies not found in other tribology books. These include: Friction in winter sports Friction of touch and human skin Friction of footware and biomaterials Friction drilling of metals Friction of tires and road surfaces Describing the tools of the trade for friction research, this edition enables engineers to purchase or build their own devices. It also discusses frictional behavior of a wide range of materials, coatings, and surface treatments, both traditional and advanced, such as thermally oxidized titanium alloys, nanocomposites, ultra-low friction films, laser-dimpled ceramics, and carbon composites. Even after centuries of study, friction continues to conceal its subtle origins, especially in practical engineering situations in which surfaces are exposed to complex and changing environments. Authored by a field specialist with more than 30 years of experience, this one-stop resource discusses all aspects of friction, from its humble beginnings to its broad application for modern engineers.
The book addresses instability and bifurcation phenomena in frictional contact problems. The treatment of this subject has its roots in previous studies of instability and bifurcation in elastic, thermoelastic or elastic-plastic bodies, and in previous mathematical, mechanical and computational studies of unilateral problems. The salient feature of this book is to put together and develop concepts and tools for stability and bifurcation studies in mechanics, taking into account the inherent non-smoothness and non-associativity (non-symmetry) of unilateral frictional contact laws. The mechanical foundations, the mathematical theory and the computational algorithms for such studies are developed along six chapters written by the lecturers of a CISM course. Those concepts and tools are illustrated not only with enlightening academic examples but also with some demanding industrial applications, related, namely, to the automotive industry.
Taking a mechanistic approach that emphasizes the physical behavior of rubber as it slides, Analyzing Friction in the Design of Rubber Products and Their Paired Surfaces integrates the engineering and scientific evidence demonstrating that the laws of metallic friction do not apply to rubber. The book also presents a newly developed, scientifically based unified theory of rubber friction that incorporates a fourth basic rubber friction force: surface deformation hysteresis. With applications that phenomenologically treat both static and dynamic rubber friction, the book offers practical guidance for implementing the unified theory in the analysis and design processes. The use of this theory enables comprehensive calculations of rubber friction, thereby offering opportunities to enhance public safety. While the theory applies to all elastomeric products where friction is an issue, the author primarily focuses on: • Analyzing friction in the design of rubber tires and their contacted pavements • The geometric design of roadways • Motor vehicle accident reconstruction • Analyzing slip resistance in the design of footwear and their contacted walking surfaces Supported by extensive analytical evidence, this book details what rubber friction is and why it behaves the way it does.